Ad
related to: what is a bearing math problem in chemistry class 12th exercise 2
Search results
Results From The WOW.Com Content Network
Protein folding problem: Is it possible to predict the secondary, tertiary and quaternary structure of a polypeptide sequence based solely on the sequence and environmental information? Inverse protein-folding problem: Is it possible to design a polypeptide sequence which will adopt a given structure under certain environmental conditions?
The Abbott-Firestone curve or bearing area curve (BAC) describes the surface texture of an object. The curve can be found from a profile trace by drawing lines parallel to the datum and measuring the fraction of the line which lies within the profile.
A problem set, sometimes shortened as pset, [1] is a teaching tool used by many universities. Most courses in physics, math, engineering, chemistry, and computer science will give problem sets on a regular basis. [2] They can also appear in other subjects, such as economics.
A starting point for solving contact problems is to understand the effect of a "point-load" applied to an isotropic, homogeneous, and linear elastic half-plane, shown in the figure to the right. The problem may be either plane stress or plane strain. This is a boundary value problem of linear elasticity subject to the traction boundary conditions:
For example, the sphericity of the balls inside a ball bearing determines the quality of the bearing, such as the load it can bear or the speed at which it can turn without failing. Sphericity is a specific example of a compactness measure of a shape.
In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. [1] [2] A critical feature of the technique is a middle step that breaks the problem into "solvable" and "perturbative" parts. [3]
An artificially produced word problem is a genre of exercise intended to keep mathematics relevant. Stephen Leacock described this type: [ 1 ] The student of arithmetic who has mastered the first four rules of his art and successfully striven with sums and fractions finds himself confronted by an unbroken expanse of questions known as problems.
In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way. Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [2]