Search results
Results From The WOW.Com Content Network
Protein folding problem: Is it possible to predict the secondary, tertiary and quaternary structure of a polypeptide sequence based solely on the sequence and environmental information? Inverse protein-folding problem: Is it possible to design a polypeptide sequence which will adopt a given structure under certain environmental conditions?
The Abbott-Firestone curve or bearing area curve (BAC) describes the surface texture of an object. The curve can be found from a profile trace by drawing lines parallel to the datum and measuring the fraction of the line which lies within the profile.
A problem set, sometimes shortened as pset, [1] is a teaching tool used by many universities. Most courses in physics, math, engineering, chemistry, and computer science will give problem sets on a regular basis. [2] They can also appear in other subjects, such as economics.
The problem of finding the smallest ball such that k disjoint open unit balls may be packed inside it has a simple and complete answer in n-dimensional Euclidean space if +, and in an infinite-dimensional Hilbert space with no restrictions. It is worth describing in detail here, to give a flavor of the general problem.
Bearing pressure is a particular case of contact mechanics often occurring in cases where a convex surface (male cylinder or sphere) contacts a concave surface (female cylinder or sphere: bore or hemispherical cup). Excessive contact pressure can lead to a typical bearing failure such as a plastic deformation similar to peening.
For example, the sphericity of the balls inside a ball bearing determines the quality of the bearing, such as the load it can bear or the speed at which it can turn without failing. Sphericity is a specific example of a compactness measure of a shape.
Problems 1, 2, 5, 6, [g] 9, 11, 12, 15, 21, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems. That leaves 8 (the Riemann hypothesis), 13 and 16 [h] unresolved, and 4 and 23 as too vague to ever be described as solved. The withdrawn 24 would also be in this class.
For example, a common method of describing a knot is a planar diagram called a knot diagram, in which any knot can be drawn in many different ways. Therefore, a fundamental problem in knot theory is determining when two descriptions represent the same knot. A complete algorithmic solution to this problem exists, which has unknown complexity. [1]