Search results
Results From The WOW.Com Content Network
More formally, proposition B is a corollary of proposition A, if B can be readily deduced from A or is self-evident from its proof. In many cases, a corollary corresponds to a special case of a larger theorem, [4] which makes the theorem easier to use and apply, [5] even though its importance is generally considered to be secondary to that of ...
A porism is a mathematical proposition or corollary. It has been used to refer to a direct consequence of a proof, analogous to how a corollary refers to a direct consequence of a theorem. In modern usage, it is a relationship that holds for an infinite range of values but only if a certain condition is assumed, such as Steiner's porism. [1]
In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem" or an "auxiliary theorem".
The following corollary is also known as Nakayama's lemma, and it is in this form that it most often appears. [ 4 ] Statement 3 : If M {\displaystyle M} is a finitely generated module over R {\displaystyle R} , J ( R ) {\displaystyle J(R)} is the Jacobson radical of R {\displaystyle R} , and J ( R ) M = M {\displaystyle J(R)M=M} , then M = 0 ...
Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.
Absolute geometry is a geometry based on an axiom system consisting of all the axioms giving Euclidean geometry except for the parallel postulate or any of its alternatives. [69] The term was introduced by János Bolyai in 1832. [70] It is sometimes referred to as neutral geometry, [71] as it is neutral with respect to the parallel postulate.
Removing five axioms mentioning "plane" in an essential way, namely I.4–8, and modifying III.4 and IV.1 to omit mention of planes, yields an axiomatization of Euclidean plane geometry. Hilbert's axioms, unlike Tarski's axioms, do not constitute a first-order theory because the axioms V.1–2 cannot be expressed in first-order logic.
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.