Search results
Results From The WOW.Com Content Network
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Atmospheric pollutant concentrations expressed as mass per unit volume of atmospheric air (e.g., mg/m 3, μg/m 3, etc.) at sea level will decrease with increasing altitude because the atmospheric pressure decreases with increasing altitude. The change of atmospheric pressure with altitude can be obtained from this equation: [2]
{{convert|100|Mm|mm}} → 100 megametres (1.0 × 10 11 mm) The output of {{convert}} can display multiple converted units, if further unit-codes are specified after the second unnamed parameter (without the pipe separator). Typical combination output units are listed below in column 7. {{convert|55|nmi|km mi}} → 55 nautical miles (102 km; 63 mi)
Length; system unit code (other) symbol or abbrev. notes conversion factor/m combinations SI: gigametre: Gm Gm US spelling: gigameter 1.0 Gm (620,000 mi) megametre: Mm Mm US spelling: megameter
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
Glycemic load of a 100 g serving of food can be calculated as its carbohydrate content measured in grams (g), multiplied by the food's GI, and divided by 100. For example, watermelon has a GI of 72. A 100 g serving of watermelon has 5 g of available carbohydrates (it contains a lot of water), making the calculation (5 × 72)/100=3.6, so the GL ...
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).