When.com Web Search

  1. Ad

    related to: logistic regression with categorical variables

Search results

  1. Results From The WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Binary variables can be generalized to categorical variables when there are more than two possible values (e.g. whether an image is of a cat, dog, lion, etc.), and the binary logistic regression generalized to multinomial logistic regression.

  3. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    The basic setup is the same as in logistic regression, the only difference being that the dependent variables are categorical rather than binary, i.e. there are K possible outcomes rather than just two. The following description is somewhat shortened; for more details, consult the logistic regression article.

  4. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    One of the most common applications is in logistic regression, which is used for modeling categorical dependent variables (e.g., yes-no choices or a choice of 3 or 4 possibilities), much as standard linear regression is used for modeling continuous variables (e.g., income or population).

  5. Categorical variable - Wikipedia

    en.wikipedia.org/wiki/Categorical_variable

    Categorical variables represent a qualitative method of scoring data (i.e. represents categories or group membership). These can be included as independent variables in a regression analysis or as dependent variables in logistic regression or probit regression, but must be converted to quantitative data in order to be able to analyze the data ...

  6. One in ten rule - Wikipedia

    en.wikipedia.org/wiki/One_in_ten_rule

    In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...

  7. Ordered logit - Wikipedia

    en.wikipedia.org/wiki/Ordered_logit

    In statistics, the ordered logit model or proportional odds logistic regression is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. [1]

  8. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    Additionally, data should always be categorical. Continuous data can first be converted to categorical data, with some loss of information. With both continuous and categorical data, it would be best to use logistic regression. (Any data that is analysed with log-linear analysis can also be analysed with logistic regression.

  9. Category:Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Category:Logistic_regression

    Pages in category "Logistic regression" The following 15 pages are in this category, out of 15 total. ... Variable rules analysis This page was last ...