Ads
related to: complex number modulus calculator mathway soup free
Search results
Results From The WOW.Com Content Network
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
Complex modulus may refer to: Modulus of complex number , in mathematics, the norm or absolute value, of a complex number: | x + i y | = x 2 + y 2 {\displaystyle |x+iy|={\sqrt {x^{2}+y^{2}}}} Dynamic modulus , in materials engineering, the ratio of stress to strain under vibratory conditions
A modest extension of the version of de Moivre's formula given in this article can be used to find the n-th roots of a complex number for a non-zero integer n. (This is equivalent to raising to a power of 1 / n). If z is a complex number, written in polar form as = ( + ),
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
Modulus, the absolute value of a real or complex number ( | a |) Moduli space, in mathematics a geometric space whose points represent algebro-geometric objects; Conformal modulus, a measure of the size of a curve family; Modulus of continuity, a function gauging the uniform continuity of a function; Similarly, the modulus of a Dirichlet character
If K is a number field, ν(p) = 0 or 1 for real places and ν(p) = 0 for complex places. If K is a function field, ν(p) = 0 for all infinite places. In the function field case, a modulus is the same thing as an effective divisor, [5] and in the number field case, a modulus can be considered as special form of Arakelov divisor. [6]
The brightness of the color is used to show the modulus of the complex logarithm. The real part of log(z) is the natural logarithm of | z |. Its graph is thus obtained by rotating the graph of ln(x) around the z-axis. In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to ...
In arithmetic, a complex-base system is a positional numeral system whose radix is an imaginary (proposed by Donald Knuth in 1955 [1] [2]) or complex number (proposed by S. Khmelnik in 1964 [3] and Walter F. Penney in 1965 [4] [5] [6]).