Search results
Results From The WOW.Com Content Network
In epidemiology, attributable fraction for the population (AFp) is the proportion of incidents in the population that are attributable to the risk factor. The term attributable risk percent for the population is used if the fraction is expressed as a percentage. [ 1 ]
The adverse outcome (black) risk difference between the group exposed to the treatment (left) and the group unexposed to the treatment (right) is −0.25 (RD = −0.25, ARR = 0.25).
In epidemiology, attributable fraction among the exposed (AF e) is the proportion of incidents in the exposed group that are attributable to the risk factor. The term attributable risk percent among the exposed is used if the fraction is expressed as a percentage. [ 1 ]
It is calculated as = /, where is the incidence in the exposed group, is the incidence in the population. [ 1 ] [ 2 ] It is used when an exposure reduces the risk, as opposed to increasing it, in which case its symmetrical notion is attributable fraction for the population .
The number of infections equals the cases identified in the study or observed. An example would be HIV infection during a specific time period in the defined population. The population at risk are the cases appearing in the population during the same time period. An example would be all the people in a city during a specific time period.
Lifetime prevalence (LTP) is the proportion of individuals in a population that at some point in their life (up to the time of assessment) have experienced a "case" (e.g., a disease, a traumatic event, or, a behavior, such as committing a crime). Often, a 12-month prevalence (or some other type of "period prevalence") is provided in conjunction ...
In epidemiology, preventable fraction among the unexposed (PFu), is the proportion of incidents in the unexposed group that could be prevented by exposure.It is calculated as = / =, where is the incidence in the exposed group, is the incidence in the unexposed group, and is the relative risk.
This threshold can be calculated from the effective reproduction number R e, which is obtained by taking the product of the basic reproduction number R 0, the average number of new infections caused by each case in an entirely susceptible population that is homogeneous, or well-mixed, meaning each individual is equally likely to come into ...