Ad
related to: bistar graph theory explained
Search results
Results From The WOW.Com Content Network
In graph theory, a star S k is the complete bipartite graph K 1,k : a tree with one internal node and k leaves (but no internal nodes and k + 1 leaves when k ≤ 1). Alternatively, some authors define S k to be the tree of order k with maximum diameter 2; in which case a star of k > 2 has k − 1 leaves. A star with 3 edges is called a claw.
A complete bipartite graph K m,n has a maximum matching of size min{m,n}. A complete bipartite graph K n,n has a proper n-edge-coloring corresponding to a Latin square. [14] Every complete bipartite graph is a modular graph: every triple of vertices has a median that belongs to shortest paths between each pair of vertices. [15]
A complete bipartite graph with m = 5 and n = 3 The Heawood graph is bipartite.. In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in .
For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.
In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects.
Forbidden graph characterizations may be used in algorithms for testing whether a graph belongs to a given family. In many cases, it is possible to test in polynomial time whether a given graph contains any of the members of the obstruction set, and therefore whether it belongs to the family defined by that obstruction set.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
The fragment can then be used to construct the non-Hamiltonian Tutte graph, by putting together three such fragments as shown on the picture.The "compulsory" edges of the fragments, that must be part of any Hamiltonian path through the fragment, are connected at the central vertex; because any cycle can use only two of these three edges, there can be no Hamiltonian cycle.