Search results
Results From The WOW.Com Content Network
Thomson scattering is a model for the effect of electromagnetic fields on electrons when the field energy is much less than the rest mass of the electron .In the model the electric field of the incident wave accelerates the charged particle, causing it, in turn, to emit radiation at the same frequency as the incident wave, and thus the wave is scattered.
The classical electron radius appears in the classical limit of modern theories as well, including non-relativistic Thomson scattering and the relativistic Klein–Nishina formula. Also, is roughly the length scale at which renormalization becomes important in quantum electrodynamics. That is, at short-enough distances, quantum fluctuations ...
In some cases it is convenient to express the classical electron radius in terms of the Compton wavelength: = ¯ = /, where is the fine structure constant (~1/137) and ¯ = / is the reduced Compton wavelength of the electron (~0.386 pm), so that the constant in the cross section may be given as:
In any case, the context and/or unit of the gas constant should make it clear as to whether the universal or specific gas constant is being referred to. [ 10 ] In case of air, using the perfect gas law and the standard sea-level conditions (SSL) (air density ρ 0 = 1.225 kg/m 3 , temperature T 0 = 288.15 K and pressure p 0 = 101 325 Pa ), we ...
The units of the structure-factor amplitude depend on the incident radiation. For X-ray crystallography they are multiples of the unit of scattering by a single electron (2.82 m); for neutron scattering by atomic nuclei the unit of scattering length of m is commonly used.
Scattering of laser light from the electrons in a plasma is known as Thomson scattering. The electron temperature can be determined very reliably from the Doppler broadening of the laser line. The electron density can be determined from the intensity of the scattered light, but a careful absolute calibration is required.
In practice, the diameter of gas molecules is not well defined. In fact, the kinetic diameter of a molecule is defined in terms of the mean free path. Typically, gas molecules do not behave like hard spheres, but rather attract each other at larger distances and repel each other at shorter distances, as can be described with a Lennard-Jones ...
It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons (a process known as Compton scattering). The standard Compton wavelength λ of a particle of mass m {\displaystyle m} is given by λ = h m c , {\displaystyle \lambda ={\frac {h}{mc}},} where h is the Planck constant and c is the speed of light .