When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    For a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone. In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions.

  3. Graph continuous function - Wikipedia

    en.wikipedia.org/wiki/Graph_continuous_function

    Function : is graph continuous if for all there exists a function : such that ((),) is continuous at .. Dasgupta and Maskin named this property "graph continuity" because, if one plots a graph of a player's payoff as a function of his own strategy (keeping the other players' strategies fixed), then a graph-continuous payoff function will result in this graph changing continuously as one varies ...

  4. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    The implicit function theorem of more than two real variables deals with the continuity and differentiability of the function, as follows. [4] Let ϕ(x 1, x 2, …, x n) be a continuous function with continuous first order partial derivatives, and let ϕ evaluated at a point (a, b) = (a 1, a 2, …, a n, b) be zero:

  5. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    It turns out that the Weierstrass function is far from being an isolated example: although it is "pathological", it is also "typical" of continuous functions: In a topological sense: the set of nowhere-differentiable real-valued functions on [0, 1] is comeager in the vector space C ([0, 1]; R ) of all continuous real-valued functions on [0, 1 ...

  6. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A function is continuous on a semi-open or a closed interval; if the interval is contained in the domain of the function, the function is continuous at every interior point of the interval, and the value of the function at each endpoint that belongs to the interval is the limit of the values of the function when the variable tends to the ...

  7. Intermediate value theorem - Wikipedia

    en.wikipedia.org/wiki/Intermediate_value_theorem

    Intermediate value theorem: Let be a continuous function defined on [,] and let be a number with () < < ().Then there exists some between and such that () =.. In mathematical analysis, the intermediate value theorem states that if is a continuous function whose domain contains the interval [a, b], then it takes on any given value between () and () at some point within the interval.

  8. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    The difference between uniform continuity and (ordinary) continuity is that, in uniform continuity there is a globally applicable (the size of a function domain interval over which function value differences are less than ) that depends on only , while in (ordinary) continuity there is a locally applicable that depends on both and . So uniform ...

  9. Step function - Wikipedia

    en.wikipedia.org/wiki/Step_function

    The product of a step function with a number is also a step function. As such, the step functions form an algebra over the real numbers. A step function takes only a finite number of values. If the intervals , for =,, …, in the above definition of the step function are disjoint and their union is the real line, then () = for all .