When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hexahedron - Wikipedia

    en.wikipedia.org/wiki/Hexahedron

    A hexahedron (pl.: hexahedra or hexahedrons) or sexahedron (pl.: sexahedra or sexahedrons) is any polyhedron with six faces. A cube, for example, is a regular hexahedron with all its faces square, and three squares around each vertex. There are seven topologically distinct convex hexahedra, [1] one of which exists in two mirror image forms ...

  3. Cuboid - Wikipedia

    en.wikipedia.org/wiki/Cuboid

    [1] [3] Along with the rectangular cuboids, parallelepiped is a cuboid with six parallelogram. Rhombohedron is a cuboid with six rhombus faces. A square frustum is a frustum with a square base, but the rest of its faces are quadrilaterals; the square frustum is formed by truncating the apex of a square pyramid .

  4. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    A function (in black) is convex if and only if the region above its graph (in green) is a convex set. A graph of the bivariate convex function x 2 + xy + y 2. Convex vs. Not convex

  5. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Peak, an (n-3)-dimensional element For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure : not itself an element of a polytope, but a diagram showing how the elements meet.

  6. Convex analysis - Wikipedia

    en.wikipedia.org/wiki/Convex_analysis

    Convex analysis includes not only the study of convex subsets of Euclidean spaces but also the study of convex functions on abstract spaces. Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets , often with applications in convex minimization , a subdomain of optimization theory .

  7. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    A convex polyhedron is a polyhedron that bounds a convex set. Every convex polyhedron can be constructed as the convex hull of its vertices, and for every finite set of points, not all on the same plane, the convex hull is a convex polyhedron. Cubes and pyramids are examples of convex polyhedra.

  8. Convex combination - Wikipedia

    en.wikipedia.org/wiki/Convex_combination

    Convex combination of two functions as vectors in a vector space of functions - visualized in Open Source Geogebra with [,] = [,] and as the first function : [,] a polynomial is defined. f ( x ) := 3 10 ⋅ x 2 − 2 {\displaystyle f(x):={\frac {3}{10}}\cdot x^{2}-2} A trigonometric function g : [ a , b ] → R {\displaystyle g:[a,b]\to \mathbb ...

  9. Cauchy's theorem (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_theorem_(geometry)

    Convex regular icosahedron. Let P and Q be combinatorially equivalent 3-dimensional convex polytopes; that is, they are convex polytopes with isomorphic face lattices. Suppose further that each pair of corresponding faces from P and Q are congruent to each other, i.e. equal up to a rigid motion. Then P and Q are themselves congruent.