Search results
Results From The WOW.Com Content Network
It is a weight-driven clock (the weight chain is removed) with a verge escapement (K,L), with the 1 second pendulum (X) suspended on a cord (V). The large metal plate (T) in front of the pendulum cord is the first illustration of Huygens' 'cycloidal cheeks', an attempt to improve accuracy by forcing the pendulum to follow a cycloidal path ...
The period T is the time taken to complete one cycle of an oscillation or rotation. The frequency and the period are related by the equation [4] =. The term temporal frequency is used to emphasise that the frequency is characterised by the number of occurrences of a repeating event per unit time.
The seconds pendulum, a pendulum with a period of two seconds so each swing takes one second, was widely used to measure gravity, because its period could be easily measured by comparing it to precision regulator clocks, which all had seconds pendulums. By the late 17th century, the length of the seconds pendulum became the standard measure of ...
Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of reciprocal length, expressed in SI units of cycles per metre or reciprocal metre (m −1). Angular wavenumber, defined as the wave phase divided by time, is a quantity with dimension of angle per length and SI units of ...
The hertz is defined as one per second for periodic events. The International Committee for Weights and Measures defined the second as "the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom" [3] [4] and then adds: "It follows that the hyperfine splitting in the ground state of the ...
The real period is, of course, the time it takes the pendulum to go through one full cycle. Paul Appell pointed out a physical interpretation of the imaginary period: [16] if θ 0 is the maximum angle of one pendulum and 180° − θ 0 is the maximum angle of another, then the real period of each is the magnitude of the imaginary period of the ...
It can also be formulated as the instantaneous rate of change of the number of rotations, N, with respect to time, t: n=dN/dt (as per International System of Quantities). [4] Similar to ordinary period, the reciprocal of rotational frequency is the rotation period or period of rotation, T=ν −1 =n −1, with dimension of time (SI unit seconds).
The cycle per second is a once-common English name for the unit of frequency now known as the hertz (Hz). Cycles per second may be denoted by c.p.s., c/s, or, ambiguously, just "cycles" (Cyc., Cy., C, or c). The term comes from repetitive phenomena such as sound waves having a frequency measurable as a number of oscillations, or cycles, per ...