Search results
Results From The WOW.Com Content Network
In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.
In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]
Isomap defines the geodesic distance to be the sum of edge weights along the shortest path between two nodes (computed using Dijkstra's algorithm, for example). The top n eigenvectors of the geodesic distance matrix , represent the coordinates in the new n -dimensional Euclidean space.
In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem , and therefore is occasionally called the Pythagorean distance .
Lloyd's algorithm is usually used in a Euclidean space. The Euclidean distance plays two roles in the algorithm: it is used to define the Voronoi cells, but it also corresponds to the choice of the centroid as the representative point of each cell, since the centroid is the point that minimizes the average squared Euclidean distance to the ...
This example illustrates the implementation of the dynamic time warping algorithm when the two sequences s and t are strings of discrete symbols. For two symbols x and y, d(x, y) is a distance between the symbols, e.g. d(x, y) = | |.
A measure for the dissimilarity of two shapes is given by Hausdorff distance up to isometry, denoted D H. Namely, let X and Y be two compact figures in a metric space M (usually a Euclidean space); then D H (X,Y) is the infimum of d H (I(X),Y) among all isometries I of the metric space M to itself.
Based on this, the connectivity between two data points, and , can be defined as the probability of walking from to in one step of the random walk. Usually, this probability is specified in terms of a kernel function of the two points: k : X × X → R {\displaystyle k:X\times X\rightarrow \mathbb {R} } .