Search results
Results From The WOW.Com Content Network
The equality equivalence relation is the finest equivalence relation on any set, while the universal relation, which relates all pairs of elements, is the coarsest. The relation " ∼ {\displaystyle \sim } is finer than ≈ {\displaystyle \approx } " on the collection of all equivalence relations on a fixed set is itself a partial order ...
In mathematics, given a category C, a quotient of an object X by an equivalence relation: is a coequalizer for the pair of maps , =,, where R is an object in C and "f is an equivalence relation" means that, for any object T in C, the image (which is a set) of : = (,) () is an equivalence relation; that is, a reflexive, symmetric and transitive relation.
In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. [1]
In algebraic geometry, a branch of mathematics, an adequate equivalence relation is an equivalence relation on algebraic cycles of smooth projective varieties used to obtain a well-working theory of such cycles, and in particular, well-defined intersection products. Pierre Samuel formalized the concept of an adequate equivalence relation in ...
Let be the set of ordered pairs of integers (,) with non-zero , and define an equivalence relation on such that (,) (,) if and only if =, then the equivalence class of the pair (,) can be identified with the rational number /, and this equivalence relation and its equivalence classes can be used to give a formal definition of the set of ...
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
A ternary equivalence relation is symmetric, reflexive, and transitive, where those terms are meant in the sense defined below. The classic example is the relation of collinearity among three points in Euclidean space. In an abstract set, a ternary equivalence relation determines a collection of equivalence classes or pencils that form a linear ...
In mathematics, a partial equivalence relation (often abbreviated as PER, in older literature also called restricted equivalence relation [1]) is a homogeneous binary relation that is symmetric and transitive. If the relation is also reflexive, then the relation is an equivalence relation.