Search results
Results From The WOW.Com Content Network
Lipid metabolism is the synthesis and degradation of lipids in cells, involving the breakdown and storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of cell membranes. In animals, these fats are obtained from food and are synthesized by the liver. [1]
Fatty acids, stored as triglycerides in an organism, are a concentrated source of energy because they contain little oxygen and are anhydrous. The energy yield from a gram of fatty acids is approximately 9 kcal (37 kJ), much higher than the 4 kcal (17 kJ) for carbohydrates.
Fatty acid degradation is the process in which fatty acids are broken down into their metabolites, in the end generating acetyl-CoA, the entry molecule for the citric acid cycle, the main energy supply of living organisms, including bacteria and animals. [1] [2] It includes three major steps: Lipolysis of and release from adipose tissue
In mammals the aerobic desaturation is catalyzed by a complex of three membrane-bound enzymes (NADH-cytochrome b 5 reductase, cytochrome b 5, and a desaturase). These enzymes allow molecular oxygen, O 2, to interact with the saturated fatty acyl-CoA chain, forming a double bond and two molecules of water, H 2 O. Two electrons come from NADH + H +
The fatty acid structure is one of the most fundamental categories of biological lipids and is commonly used as a building-block of more structurally complex lipids. The carbon chain, typically between four and 24 carbons long, [ 23 ] may be saturated or unsaturated , and may be attached to functional groups containing oxygen , halogens ...
Oxidation by NAD +: The third step is the oxidation of L-β-hydroxyacyl CoA by NAD +. This converts the hydroxyl group into a keto group. 3-hydroxyacyl-CoA dehydrogenase: β-ketoacyl CoA Thiolysis: The final step is the cleavage of β-ketoacyl CoA by the thiol group of another molecule of Coenzyme A. The thiol is inserted between C-2 and C-3 ...
Metabolism (/ m ə ˈ t æ b ə l ɪ z ə m /, from Greek: μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms.The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the ...
Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.