Search results
Results From The WOW.Com Content Network
An illustration of the structure of the Sun and a red giant star, showing their convective zones. These are the granular zones in the outer layers of the stars. A convection zone, convective zone or convective region of a star is a layer which is unstable due to convection. Energy is primarily or partially transported by convection in such
A star's magnetic field can be measured using the Zeeman effect. Normally the atoms in a star's atmosphere will absorb certain frequencies of energy in the electromagnetic spectrum, producing characteristic dark absorption lines in the spectrum. However, when the atoms are within a magnetic field, these lines become split into multiple, closely ...
The third dredge-up occurs after a star enters the asymptotic giant branch, after a flash occurs in a helium-burning shell. The third dredge-up brings helium, carbon, and the s-process products to the surface, increasing the abundance of carbon relative to oxygen; in some larger stars this is the process that turns the star into a carbon star. [3]
Typical boundary conditions set the values of the observable parameters appropriately at the surface (=) and center (=) of the star: () =, meaning the pressure at the surface of the star is zero; () =, there is no mass inside the center of the star, as required if the mass density remains finite; () =, the total mass of the star is the star's ...
The stellar atmosphere is the outer region of the volume of a star, lying above the stellar core, radiation zone and convection zone. Overview The stellar atmosphere ...
Convection is the mechanism believed to be responsible for the observed turbulent velocity field, both in low mass stars and massive stars. When examined by a spectroscope, the velocity of the convective gas along the line of sight produces Doppler shifts in the absorption bands. It is the distribution of these velocities along the line of ...
If a star is placed in the forbidden zone, with a temperature gradient much greater than 0.4, it will experience rapid convection that brings the gradient down. Since this convection will drastically change the star's pressure and temperature distribution, the star is not in hydrostatic equilibrium, and will contract until it is.
The emission spectrum is created by a dense stellar wind caused by the extreme luminosity, with the enhanced levels of helium and nitrogen being mixed from the core to the surface by strong convection. It is effectively a WR-type main sequence star. [20] Over 90% of the star is convective, with a small non-convective layer at the surface. [29]