Search results
Results From The WOW.Com Content Network
Generally, it may be put only between digit characters. It cannot be put at the beginning (_121) or the end of the value (121_ or 121.05_), next to the decimal in floating point values (10_.0), next to the exponent character (1.1e_1), or next to the type specifier (10_f).
C# has a built-in data type decimal consisting of 128 bits resulting in 28–29 significant digits. It has an approximate range of ±1.0 × 10 −28 to ±7.9228 × 10 28. [1] Starting with Python 2.4, Python's standard library includes a Decimal class in the module decimal. [2] Ruby's standard library includes a BigDecimal class in the module ...
The "decimal" data type of the C# and Python programming languages, and the decimal formats of the IEEE 754-2008 standard, are designed to avoid the problems of binary floating-point representations when applied to human-entered exact decimal values, and make the arithmetic always behave as expected when numbers are printed in decimal.
For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point representation with 8 decimal digits could also represent 1.2345678, 1234567.8, 0.000012345678, 12345678000000000, and so on.
Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.
Decimal arithmetic, compatible with that used in Java, C#, PL/I, COBOL, Python, REXX, etc., is also defined in this section. In general, decimal arithmetic follows the same rules as binary arithmetic (results are correctly rounded, and so on), with additional rules that define the exponent of a result (more than one is possible in many cases).
(The 8 × 3 = 24 non-standard encodings fill in the gap from 10 3 = 1000 and 2 10 - 1 = 1023. Benefit of this encoding is access to individual digits by de- / encoding only 10 bits, disadvantage is that some simple functions like sort and compare, very frequently used in coding, do not work on the bit pattern but require decoding to decimal ...
The use of decimal when talking about binary is unfortunate because most decimal fractions are recurring sequences in binary just as 2 / 3 is in decimal. Thus, a value such as 10.15, is represented in binary as equivalent to 10.1499996185 etc. in decimal for REAL*4 but 10.15000000000000035527 etc. in REAL*8: inter-conversion will ...