Search results
Results From The WOW.Com Content Network
These considerations outweigh the convenient divisibility of the number 360. One complete turn (360°) is equal to 2 π radians, so 180° is equal to π radians, or equivalently, the degree is a mathematical constant: 1° = π ⁄ 180. One turn (corresponding to a cycle or revolution) is equal to 360°.
One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.
In general, the measures of the interior angles of a simple convex polygon with n sides add up to (n − 2) π radians, or (n − 2)180 degrees, (n − 2)2 right angles, or (n − 2) 1 / 2 turn. The supplement of an interior angle is called an exterior angle; that is, an interior angle and an exterior angle form a linear pair of angles ...
provided the angle is measured in radians. Angles measured in degrees must first be converted to radians by multiplying them by / . These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science.
The binary degree, also known as the binary radian (or brad), is 1 / 256 turn. [21] The binary degree is used in computing so that an angle can be represented to the maximum possible precision in a single byte. Other measures of angle used in computing may be based on dividing one whole turn into 2 n equal parts for other values of n. [22]
The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.
Solid angles can also be measured in square degrees (1 sr = (180/ π) 2 square degrees), in square arc-minutes and square arc-seconds, or in fractions of the sphere (1 sr = 1 / 4 π fractional area), also known as spat (1 sp = 4 π sr). In spherical coordinates there is a formula for the differential,
In a right-angled triangle, the sum of the two acute angles is a right angle, that is, 90° or π / 2 radians. Therefore and represent the same ratio, and thus are equal. This identity and analogous relationships between the other trigonometric functions are summarized in the following table.