When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    An orthogonal projection is a projection for which the range ... This formula can be generalized to orthogonal projections on a subspace of arbitrary dimension.

  3. Orthogonal complement - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_complement

    In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace of a vector space equipped with a bilinear form is the set of all vectors in that are orthogonal to every vector in .

  4. Matching pursuit - Wikipedia

    en.wikipedia.org/wiki/Matching_pursuit

    A popular extension of Matching Pursuit (MP) is its orthogonal version: Orthogonal Matching Pursuit [14] [15] (OMP). The main difference from MP is that after every step, all the coefficients extracted so far are updated, by computing the orthogonal projection of the signal onto the subspace spanned by the set of atoms selected so far. This can ...

  5. Hilbert projection theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert_projection_theorem

    Hilbert projection theorem — For every vector in a Hilbert space and every nonempty closed convex , there exists a unique vector for which ‖ ‖ is equal to := ‖ ‖.. If the closed subset is also a vector subspace of then this minimizer is the unique element in such that is orthogonal to .

  6. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    The orthogonal complement of a subspace is the space of all vectors that are orthogonal to every vector in the subspace. In a three-dimensional Euclidean vector space, the orthogonal complement of a line through the origin is the plane through the origin perpendicular to it, and vice versa.

  7. Projection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Projection_(mathematics)

    In mathematics, a projection is an idempotent mapping of a set (or other mathematical structure) into a subset (or sub-structure). In this case, idempotent means that projecting twice is the same as projecting once. The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost. An everyday ...

  8. Projection matrix - Wikipedia

    en.wikipedia.org/wiki/Projection_matrix

    A matrix, has its column space depicted as the green line. The projection of some vector onto the column space of is the vector . From the figure, it is clear that the closest point from the vector onto the column space of , is , and is one where we can draw a line orthogonal to the column space of .

  9. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .