When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heaviside cover-up method - Wikipedia

    en.wikipedia.org/wiki/Heaviside_cover-up_method

    When a partial fraction term has a single (i.e. unrepeated) binomial in the denominator, the numerator is a residue of the function defined by the input fraction. We calculate each respective numerator by (1) taking the root of the denominator (i.e. the value of x that makes the denominator zero) and (2) then substituting this root into the ...

  3. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]

  4. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    Sometimes this remainder is added to the quotient as a fractional part, so 10 / 3 is equal to ⁠3 + 1 / 3 ⁠ or 3.33..., but in the context of integer division, where numbers have no fractional part, the remainder is kept separately (or exceptionally, discarded or rounded). [5] When the remainder is kept as a fraction, it leads to a rational ...

  5. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  6. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    The classical form of fractional calculus is given by the Riemann–Liouville integral, which is essentially what has been described above. The theory of fractional integration for periodic functions (therefore including the "boundary condition" of repeating after a period) is given by the Weyl integral.

  7. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    In the separation of variables, these functions are given by solutions to = Hence, the spectral theorem ensures that the separation of variables will (when it is possible) find all the solutions. For many differential operators, such as d 2 d x 2 {\displaystyle {\frac {d^{2}}{dx^{2}}}} , we can show that they are self-adjoint by integration by ...

  8. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    Denoting the two roots by r 1 and r 2 we distinguish three cases. If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is not zero, and |r 1 | ≠ |r 2 |, the continued fraction converges to the root of maximum modulus (i.e., to the root with the greater absolute value).

  9. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    Instantiating a symbolic solution with specific numbers gives a numerical solution; for example, a = 0 gives (x, y) = (1, 0) (that is, x = 1, y = 0), and a = 1 gives (x, y) = (2, 1). The distinction between known variables and unknown variables is generally made in the statement of the problem, by phrases such as "an equation in x and y ", or ...