When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mean absolute error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_error

    The MAE is conceptually simpler and also easier to interpret than RMSE: it is simply the average absolute vertical or horizontal distance between each point in a scatter plot and the Y=X line. In other words, MAE is the average absolute difference between X and Y.

  3. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    In control theory, the RMSE is used as a quality measure to evaluate the performance of a state observer. [ 10 ] In fluid dynamics , normalized root mean square deviation (NRMSD), coefficient of variation (CV), and percent RMS are used to quantify the uniformity of flow behavior such as velocity profile, temperature distribution, or gas species ...

  4. Mean absolute scaled error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_scaled_error

    Asymptotic normality of the MASE: The Diebold-Mariano test for one-step forecasts is used to test the statistical significance of the difference between two sets of forecasts. [ 5 ] [ 6 ] [ 7 ] To perform hypothesis testing with the Diebold-Mariano test statistic, it is desirable for D M ∼ N ( 0 , 1 ) {\displaystyle DM\sim N(0,1)} , where D M ...

  5. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    To minimize MSE, the model could be more accurate, which would mean the model is closer to actual data. One example of a linear regression using this method is the least squares method—which evaluates appropriateness of linear regression model to model bivariate dataset, [6] but whose limitation is related to known distribution of the data.

  6. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    And if two models are to be compared, the one with the lower MSPE over the n – q out-of-sample data points is viewed more favorably, regardless of the models’ relative in-sample performances. The out-of-sample MSPE in this context is exact for the out-of-sample data points that it was computed over, but is merely an estimate of the model ...

  7. Taylor diagram - Wikipedia

    en.wikipedia.org/wiki/Taylor_diagram

    For example, an arrow can be drawn from the point representing an older version of a model to a newer version, which makes it easier to indicate more clearly whether or not the model is moving toward "truth," as defined by observations. One of the main limitation of the Taylor diagram is the absence of explicit information about model biases.

  8. Self-supervised learning - Wikipedia

    en.wikipedia.org/wiki/Self-supervised_learning

    The training process involves presenting the model with input data and requiring it to reconstruct the same data as closely as possible. The loss function used during training typically penalizes the difference between the original input and the reconstructed output (e.g. mean squared error).

  9. Symmetric mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Symmetric_mean_absolute...

    The absolute difference between A t and F t is divided by half the sum of absolute values of the actual value A t and the forecast value F t. The value of this calculation is summed for every fitted point t and divided again by the number of fitted points n.