Search results
Results From The WOW.Com Content Network
String vibrations. In physics, a string is a physical entity postulated in string theory and related subjects. Unlike elementary particles, which are zero-dimensional or point-like by definition, strings are one-dimensional extended entities. Researchers often have an interest in string theories because theories in which the fundamental ...
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings.String theory describes how these strings propagate through space and interact with each other.
Open strings attached to a pair of D-branes. In string theory, a string may be open (forming a segment with two endpoints) or closed (forming a closed loop). D-branes are an important class of branes that arise when one considers open strings. As an open string propagates through spacetime, its endpoints are required to lie on a D-brane.
In algebraic geometry and theoretical physics, mirror symmetry is a relationship between geometric objects called Calabi–Yau manifolds.The term refers to a situation where two Calabi–Yau manifolds look very different geometrically but are nevertheless equivalent when employed as extra dimensions of string theory.
In string theory, a worldsheet is a two-dimensional manifold which describes the embedding of a string in spacetime. [1] The term was coined by Leonard Susskind [2] as a direct generalization of the world line concept for a point particle in special and general relativity.
Gauge theories were not invented starting with bosonic or fermionic strings; they originated from a different area of physics, and have become quite useful in their own right. If nothing else, the relation between D-brane geometry and gauge theory offers a useful pedagogical tool for explaining gauge interactions, even if string theory fails to ...
Each theory of quantum gravity uses the term "quantum geometry" in a slightly different fashion. String theory, a leading candidate for a quantum theory of gravity, uses it to describe exotic phenomena such as T-duality and other geometric dualities, mirror symmetry, topology-changing transitions [clarification needed], minimal possible distance scale, and other effects that challenge intuition.
'Superstring theory' is a shorthand for supersymmetric string theory because unlike bosonic string theory, it is the version of string theory that accounts for both fermions and bosons and incorporates supersymmetry to model gravity.