Search results
Results From The WOW.Com Content Network
There is a half-life describing any exponential-decay process. For example: As noted above, in radioactive decay the half-life is the length of time after which there is a 50% chance that an atom will have undergone nuclear decay. It varies depending on the atom type and isotope, and is usually determined experimentally. See List of nuclides.
Radioactive decay is seen in all isotopes of all elements of atomic number 83 or greater. Bismuth-209, however, is only very slightly radioactive, with a half-life greater than the age of the universe; radioisotopes with extremely long half-lives are considered effectively stable for practical purposes.
For example, the isotope copper-64, commonly used in medical research, has a half-life of 12.7 hours. If you inject a large group of animals at "time zero", but measure the radioactivity in their organs at two later times, the later groups must be "decay corrected" to adjust for the decay that has occurred between the two time points.
The integral solution is described by exponential decay: =, where N 0 is the initial quantity of atoms at time t = 0. Half-life T 1/2 is defined as the length of time for half of a given quantity of radioactive atoms to undergo radioactive decay:
Decay scheme of 60 Co. These relations can be quite complicated; a simple case is shown here: the decay scheme of the radioactive cobalt isotope cobalt-60. [1] 60 Co decays by emitting an electron with a half-life of 5.272 years into an excited state of 60 Ni, which then decays very fast to the ground state of 60 Ni, via two gamma decays.
However, if the probability of escape at each collision is very small, the half-life of the radioisotope will be very long, since it is the time required for the total probability of escape to reach 50%. As an extreme example, the half-life of the isotope bismuth-209 is 2.01 × 10 19 years.
This refers to the time required for half of a given number of radioactive atoms to decay and is inversely related to the isotope's decay constant, λ. Half-lives have been determined in laboratories for many radionuclides, and can range from nearly instantaneous—hydrogen-5 decays in less time than it takes for a photon to go from one end of ...
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds. [1]