Search results
Results From The WOW.Com Content Network
One slug is a mass equal to 32.17405 lb (14.59390 kg) based on standard gravity, the international foot, and the avoirdupois pound. [3] In other words, at the Earth's surface (in standard gravity), an object with a mass of 1 slug weighs approximately 32.17405 lbf or 143.1173 N. [4] [5]
kilogram-force per square millimetre: kgf/mm 2: ≡ 1 kgf/mm 2 = 9.806 65 × 10 6 Pa [33] kip per square inch: ksi ≡ 1 kipf/sq in ≈ 6.894 757 × 10 6 Pa [33] long ton per square foot: ≡ 1 long ton × g 0 / 1 sq ft ≈ 1.072 517 801 1595 × 10 5 Pa: micrometre of mercury: μmHg ≡ 13 595.1 kg/m 3 × 1 μm × g 0 ≈ 0.001 torr ≈ 0.133 ...
1 slug = 1 lbf⋅s 2 /ft ≈ 14.59390 kg; Force 1 poundal = force to accelerate 1 pound mass 1 foot/second/second ≈ 0.138 newtons. 1 kip = 1000 lbf ≈ 4.44822 kN; Energy 1 foot-pound ≈ 1.356 J; 1 British thermal unit (Btu) ≈ 1.055 kJ (1,054–1,060 J, depending on which of several definitions of BTU is used)
The pound-force is the product of one avoirdupois pound (exactly 0.45359237 kg) and the standard acceleration due to gravity, approximately 32.174049 ft/s 2 (9.80665 m/s 2). [ 5 ] [ 6 ] [ 7 ] The standard values of acceleration of the standard gravitational field ( g n ) and the international avoirdupois pound (lb) result in a pound-force equal ...
In July 1959, the various national foot and avoirdupois pound standards were replaced by the international foot of precisely 0.3048 m and the international pound of precisely 0.453 592 37 kg, making conversion between the systems a matter of simple arithmetic.
Since a pound of force (pound force) accelerates a pound of mass at 32.174 049 ft/s 2 (9.80665 m/s 2; the acceleration of gravity, g), we can scale down the unit of force to compensate, giving us one that accelerates 1 pound mass at 1 ft/s 2 rather than at 32.174 049 ft/s 2; and that is the poundal, which is approximately 1 ⁄ 32 pound force.
Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).
mass which, when subjected to a force of one pound-force, accelerates by 1 ft/sec 2: 14.59 kg Mass pound-mass: lbm EEU mass which, when subjected to a force of one pound-force, accelerates by g ft/sec 2 (32.17 ft/sec 2) 0.4536 kg Power horsepower: hp EEU Power required to raise 550 lb at the rate of 1 ft/s against gravity 745.7 W Energy