Search results
Results From The WOW.Com Content Network
PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.
Algorithmic inference gathers new developments in the statistical inference methods made feasible by the powerful computing devices widely available to any data analyst. Cornerstones in this field are computational learning theory, granular computing, bioinformatics, and, long ago, structural probability (Fraser 1966). The main focus is on the ...
Probabilistic programming (PP) is a programming paradigm based on the declarative specification of probabilistic models, for which inference is performed automatically. [1] Probabilistic programming attempts to unify probabilistic modeling and traditional general purpose programming in order to make the former easier and more widely applicable.
Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law.
Bayesian optimization algorithms operate by maintaining a probabilistic belief about throughout the optimization procedure; this often takes the form of a Gaussian process prior conditioned on observations. This belief then guides the algorithm in obtaining observations that are likely to advance the optimization process.
In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution. Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's equilibrium distribution matches the target distribution. The more steps ...
In probability theory, statistics, and machine learning, recursive Bayesian estimation, also known as a Bayes filter, is a general probabilistic approach for estimating an unknown probability density function recursively over time using incoming measurements and a mathematical process model.
Variable elimination (VE) is a simple and general exact inference algorithm in probabilistic graphical models, such as Bayesian networks and Markov random fields. [1] It can be used for inference of maximum a posteriori (MAP) state or estimation of conditional or marginal distributions over a subset of variables.