When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Universal set - Wikipedia

    en.wikipedia.org/wiki/Universal_set

    In set theory, a universal set is a set which contains all objects, including itself. [1] In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set.

  3. Russell's paradox - Wikipedia

    en.wikipedia.org/wiki/Russell's_paradox

    Further, since set theory was seen as the basis for an axiomatic development of all other branches of mathematics, Russell's paradox threatened the foundations of mathematics as a whole. This motivated a great deal of research around the turn of the 20th century to develop a consistent (contradiction-free) set theory.

  4. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    In set theory, an infinite set is not considered to be created by some mathematical process such as "adding one element" that is then carried out "an infinite number of times". Instead, a particular infinite set (such as the set of all natural numbers) is said to already exist, "by fiat", as an assumption or an axiom. Given this infinite set ...

  5. Universe (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Universe_(mathematics)

    Zermelo set theory was successful precisely because it was capable of axiomatising "ordinary" mathematics, fulfilling the programme begun by Cantor over 30 years earlier. But Zermelo set theory proved insufficient for the further development of axiomatic set theory and other work in the foundations of mathematics, especially model theory.

  6. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Within homotopy type theory, a set may be regarded as a homotopy 0-type, with universal properties of sets arising from the inductive and recursive properties of higher inductive types. Principles such as the axiom of choice and the law of the excluded middle can be formulated in a manner corresponding to the classical formulation in set theory ...

  7. Class (set theory) - Wikipedia

    en.wikipedia.org/wiki/Class_(set_theory)

    In other set theories, such as New Foundations or the theory of semisets, the concept of "proper class" still makes sense (not all classes are sets) but the criterion of sethood is not closed under subsets. For example, any set theory with a universal set has proper classes which are subclasses of sets.

  8. Union (set theory) - Wikipedia

    en.wikipedia.org/wiki/Union_(set_theory)

    In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero (⁠ ⁠) sets and it is by definition equal to the empty set.

  9. Intersection (set theory) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(set_theory)

    So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...