Search results
Results From The WOW.Com Content Network
-Enzymes exhibit extreme selectivity towards their substrates. Typically enzymes display three major types of selectivity: Chemoselectivity: Since the purpose of an enzyme is to act on a single type of functional group, other sensitive functionalities, which would normally react to a certain extent under chemical catalysis, survive. As a result ...
The word lysosome (/ ˈ l aɪ s oʊ s oʊ m /, / ˈ l aɪ z ə z oʊ m /) is Neo-Latin that uses the combining forms lyso-(referring to lysis and derived from the Latin lysis, meaning "to loosen", via Ancient Greek λύσις [lúsis]), and -some, from soma, "body", yielding "body that lyses" or "lytic body".
Function: Amylase is an enzyme that is responsible for the breaking of the bonds in starches, polysaccharides, and complex carbohydrates to be turned into simple sugars that will be easier to absorb. Clinical Significance: Amylase also has medical history in the use of Pancreatic Enzyme Replacement Therapy (PERT). One of the components is ...
An illustrative example is the effect of catalysts to speed the decomposition of hydrogen peroxide into water and oxygen: . 2 H 2 O 2 → 2 H 2 O + O 2. This reaction proceeds because the reaction products are more stable than the starting compound, but this decomposition is so slow that hydrogen peroxide solutions are commercially available.
The enzyme phenylalanine ammonia lyase (EC 4.3.1.24) catalyzes the conversion of L-phenylalanine to ammonia and trans-cinnamic acid.: [1] L -phenylalanine = trans -cinnamate + NH 3 Phenylalanine ammonia lyase (PAL) is the first and committed step in the phenyl propanoid pathway and is therefore involved in the biosynthesis of the polyphenol ...
In biochemistry, an oxidoreductase is an enzyme that catalyzes the transfer of electrons from one molecule, the reductant, also called the electron donor, to another, the oxidant, also called the electron acceptor. This group of enzymes usually utilizes NADP+ or NAD+ as cofactors.
The enzyme's active site contains two Asp residues. After the substrate binds to the enzyme, the first Asp deprotonates the third carbon from one side of the molecule. This leaves a planar sp 2-hybridized intermediate. The second Asp is located on the opposite side of the active side and it protonates the molecule, effectively adding a proton ...
The enzyme then changes shape again and forces these molecules together, with the active site in the resulting "tight" state (shown in pink) binding the newly produced ATP molecule with very high affinity. Finally, the active site cycles back to the open state, releasing ATP and binding more ADP and phosphate, ready for the next cycle.