Search results
Results From The WOW.Com Content Network
Stochastic optimization (SO) are optimization methods that generate and use random variables. For stochastic optimization problems, the objective functions or constraints are random. Stochastic optimization also include methods with random iterates .
A stochastic program is an optimization problem in which some or all problem parameters are uncertain, but follow known probability distributions. [1] [2] This framework contrasts with deterministic optimization, in which all problem parameters are assumed to be known exactly. The goal of stochastic programming is to find a decision which both ...
Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but ...
Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.
Stochastic control or stochastic optimal ... Robust model predictive control is a more conservative method which considers the worst scenario in the optimization ...
Stochastic optimization is an umbrella set of methods that includes simulated annealing and numerous other approaches. Particle swarm optimization is an algorithm modeled on swarm intelligence that finds a solution to an optimization problem in a search space, or models and predicts social behavior in the presence of objectives.
We refer to second-order cone programs as deterministic second-order cone programs since data defining them are deterministic. Stochastic second-order cone programs are a class of optimization problems that are defined to handle uncertainty in data defining deterministic second-order cone programs. [10]
In artificial intelligence, stochastic programs work by using probabilistic methods to solve problems, as in simulated annealing, stochastic neural networks, stochastic optimization, genetic algorithms, and genetic programming. A problem itself may be stochastic as well, as in planning under uncertainty.