When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    To check for violations of the assumptions of linearity, constant variance, and independence of errors within a linear regression model, the residuals are typically plotted against the predicted values (or each of the individual predictors).

  3. Box's M test - Wikipedia

    en.wikipedia.org/wiki/Box's_M_test

    Box's M test is a multivariate statistical test used to check the equality of multiple variance-covariance matrices. [1] The test is commonly used to test the assumption of homogeneity of variances and covariances in MANOVA and linear discriminant analysis. It is named after George E. P. Box, who first discussed the test in 1949.

  4. Analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_covariance

    Analysis of covariance (ANCOVA) is a general linear model that blends ANOVA and regression. ANCOVA evaluates whether the means of a dependent variable (DV) are equal across levels of one or more categorical independent variables (IV) and across one or more continuous variables.

  5. Statistical assumption - Wikipedia

    en.wikipedia.org/wiki/Statistical_assumption

    Model-based assumptions. These include the following three types: Distributional assumptions. Where a statistical model involves terms relating to random errors, assumptions may be made about the probability distribution of these errors. [5] In some cases, the distributional assumption relates to the observations themselves. Structural assumptions.

  6. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    Simple back-of-the-envelope test takes the sample maximum and minimum and computes their z-score, or more properly t-statistic (number of sample standard deviations that a sample is above or below the sample mean), and compares it to the 68–95–99.7 rule: if one has a 3σ event (properly, a 3s event) and substantially fewer than 300 samples, or a 4s event and substantially fewer than 15,000 ...

  7. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    In statistics, regression validation is the process of deciding whether the numerical results quantifying hypothesized relationships between variables, obtained from regression analysis, are acceptable as descriptions of the data.

  8. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  9. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    Log-linear analysis is a technique used in statistics to examine the relationship between more than two categorical variables. The technique is used for both hypothesis testing and model building. In both these uses, models are tested to find the most parsimonious (i.e., least complex) model that best accounts for the variance in the observed ...