When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    In other words, where f is a (normalized) Gaussian function with variance σ 2 /2 π, centered at zero, and its Fourier transform is a Gaussian function with variance σ −2 /2 π. Gaussian functions are examples of Schwartz functions (see the discussion on tempered distributions below).

  3. Fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Fourier_transform

    An example FFT algorithm structure, using a decomposition into half-size FFTs A discrete Fourier analysis of a sum of cosine waves at 10, 20, 30, 40, and 50 Hz. A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT).

  4. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    In this case, if we make a very large matrix with complex exponentials in the rows (i.e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the Fredholm integral equation of the 2nd kind, namely the Fourier operator that defines the continuous Fourier transform. A rectangular ...

  5. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    Left: A continuous function (top) and its Fourier transform (bottom). Center-left: Periodic summation of the original function (top). Fourier transform (bottom) is zero except at discrete points. The inverse transform is a sum of sinusoids called Fourier series. Center-right: Original function is discretized (multiplied by a Dirac comb) (top).

  6. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    An example of a weakly nonlinear circuit. The inverse multidimensional Laplace transform can be applied to simulate nonlinear circuits. This is done so by formulating a circuit as a state-space and expanding the Inverse Laplace Transform based on Laguerre function expansion.

  7. Gabor transform - Wikipedia

    en.wikipedia.org/wiki/Gabor_transform

    The function to be transformed is first multiplied by a Gaussian function, which can be regarded as a window function, and the resulting function is then transformed with a Fourier transform to derive the time-frequency analysis. [1] The window function means that the signal near the time being analyzed will have higher weight.

  8. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    Plot of normalized ⁡ function (i.e. ⁡ ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] ⁡ = ⁡ = ⁡ (), using ordinary frequency f, where is the normalized form [10] of the sinc function and ⁡ = ⁡ (/) / = ⁡ (/), using angular frequency , where is the unnormalized form of the sinc function.

  9. Gerchberg–Saxton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gerchberg–Saxton_algorithm

    The pseudocode below performs the GS algorithm to obtain a phase distribution for the plane "Source", such that its Fourier transform would have the amplitude distribution of the plane "Target". The Gerchberg-Saxton algorithm is one of the most prevalent methods used to create computer-generated holograms .