Search results
Results From The WOW.Com Content Network
is how one would use Fortran to create arrays from the even and odd entries of an array. Another common use of vectorized indices is a filtering operation. Consider a clipping operation of a sine wave where amplitudes larger than 0.5 are to be set to 0.5. Using S-Lang, this can be done by
Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing over elements collapses the input array by 1 dimension.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
Support for multi-dimensional arrays may also be provided by external libraries, which may even support arbitrary orderings, where each dimension has a stride value, and row-major or column-major are just two possible resulting interpretations. Row-major order is the default in NumPy [19] (for Python).
However, a generator is an object with persistent state, which can repeatedly enter and leave the same scope. A generator call can then be used in place of a list, or other structure whose elements will be iterated over. Whenever the for loop in the example requires the next item, the generator is called, and yields the next item.
The expression which denotes the collection to loop over is evaluated in list-context, but not flattened by default, and each item of the resulting list is, in turn, aliased to the loop variable(s). List literal example:
Associative array (or dictionary) of key and value pairs; can contain mixed types (keys and values), keys must be a hashable type {'key1': 1.0, 3: False} {} types.EllipsisType: immutable An ellipsis placeholder to be used as an index in NumPy arrays ... Ellipsis: float: immutable Double-precision floating-point number.
Conversely, loop fusion (or loop jamming) is a compiler optimization and loop transformation which replaces multiple loops with a single one. [3] [2] Loop fusion does not always improve run-time speed. On some architectures, two loops may actually perform better than one loop because, for example, there is increased data locality within