Ads
related to: aromaticity in organic chemistry
Search results
Results From The WOW.Com Content Network
In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone.
In organic and physical organic chemistry, Clar's rule is an empirical rule that relates the chemical stability of a molecule to its aromaticity.It was introduced in 1972 by the Austrian organic chemist Erich Clar in his book The Aromatic Sextet.
Homoaromaticity, in organic chemistry, refers to a special case of aromaticity in which conjugation is interrupted by a single sp 3 hybridized carbon atom. Although this sp 3 center disrupts the continuous overlap of p-orbitals, traditionally thought to be a requirement for aromaticity, considerable thermodynamic stability and many of the spectroscopic, magnetic, and chemical properties ...
Benzene, the most widely recognized aromatic compound with six delocalized π-electrons (4n + 2, for n = 1). In organic chemistry, Hückel's rule predicts that a planar ring molecule will have aromatic properties if it has 4n + 2 π-electrons, where n is a non-negative integer.
Aromatic compounds or arenes are organic compounds "with a chemistry typified by benzene" and "cyclically conjugated." [1] The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation to their odor.
In organic chemistry, Möbius aromaticity is a special type of aromaticity believed to exist in a number of organic molecules. [ 1 ] [ 2 ] In terms of molecular orbital theory these compounds have in common a monocyclic array of molecular orbitals in which there is an odd number of out-of-phase overlaps, the opposite pattern compared to the ...
In organic chemistry, Baird's rule estimates whether the lowest triplet state of planar, cyclic structures will have aromatic properties or not. The quantum mechanical basis for its formulation was first worked out by physical chemist N. Colin Baird at the University of Western Ontario in 1972.
In organic chemistry, spherical aromaticity is formally used to describe an unusually stable nature of some spherical compounds such as fullerenes and polyhedral boranes. In 2000, Andreas Hirsch and coworkers in Erlangen , Germany , formulated a rule to determine when a spherical compound would be aromatic .