When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Acoustic wave equation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave_equation

    In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...

  3. Acoustic wave - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave

    An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...

  4. Acoustic theory - Wikipedia

    en.wikipedia.org/wiki/Acoustic_theory

    Acoustic theory is a scientific field that relates to the description of sound waves.It derives from fluid dynamics.See acoustics for the engineering approach.. For sound waves of any magnitude of a disturbance in velocity, pressure, and density we have

  5. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.

  6. Nonlinear acoustics - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_acoustics

    A sound wave propagates through a material as a localized pressure change. Increasing the pressure of a gas or fluid increases its local temperature. The local speed of sound in a compressible material increases with temperature; as a result, the wave travels faster during the high pressure phase of the oscillation than during the lower pressure phase.

  7. Acoustic attenuation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_attenuation

    On the other hand, acoustic wave equations based on fractional derivative viscoelastic models are applied to describe the power law frequency dependent acoustic attenuation. [18] Chen and Holm proposed the positive fractional derivative modified Szabo's wave equation [11] and the fractional Laplacian wave equation. [11] See [20] for a paper ...

  8. Acoustics - Wikipedia

    en.wikipedia.org/wiki/Acoustics

    There are many kinds of transduction process that convert energy from some other form into sonic energy, producing a sound wave. There is one fundamental equation that describes sound wave propagation, the acoustic wave equation, but the phenomena that emerge from it are varied and often complex. The wave carries energy throughout the ...

  9. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.