Search results
Results From The WOW.Com Content Network
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
Each repeating decimal number satisfies a linear equation with integer coefficients, and its unique solution is a rational number. In the example above, α = 5.8144144144... satisfies the equation 10000 α − 10 α
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .
In mathematics, an equation is a mathematical formula that expresses ... For example, the equation = ... is a multivariate polynomial equation over the rational numbers.
For example, x²-6 is a polynomial with integer coefficients, since 1 and -6 are integers. ... All rational numbers, and roots of rational numbers, are algebraic. ... The real number 𝜋 goes ...
For example, any irrational number x, such as x = √ 2, is a "gap" in the rationals Q in the sense that it is a real number that can be approximated arbitrarily closely by rational numbers p/q, in the sense that distance of x and p/q given by the absolute value | x − p/q | is as small as desired. The following table lists some examples of ...
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio , ( 1 + 5 ) / 2 {\displaystyle (1+{\sqrt {5}})/2} , is an algebraic number, because it is a root of the polynomial x 2 − x − 1 .
German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." [1] Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the ...