Search results
Results From The WOW.Com Content Network
In biology, translation is the process in living cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids . This sequence is determined by the sequence of nucleotides in the RNA.
Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping. It consists of four phases: initiation, elongation, termination, and recapping.
Translational research (also called translation research, translational science, or, when the context is clear, simply translation) [1] [2] is research aimed at translating (converting) results in basic research into results that directly benefit humans. The term is used in science and technology, especially in biology and medical science.
Due to the fact that translation elongation is an irreversible process, there are few known mechanisms of its regulation. However, it has been shown that translational efficiency is reduced via diminished tRNA pools, which are required for the elongation of polypeptides.
In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes, which translate mRNA into polypeptide chains, which may then change to form the mature protein product.
The eIF2 alpha subunit is characterized by an OB-fold domain and two beta strands. This subunit helps to regulate translation, as it becomes phosphorylated to inhibit protein synthesis. [2] The eIF4F complex supports the cap-dependent translation initiation process and is composed of the initiation factors eIF4A, eIF4E, and eIF4G.
Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent ...
Translation is accomplished by the ribosome, which links proteinogenic amino acids in an order specified by messenger RNA (mRNA), using transfer RNA (tRNA) molecules to carry amino acids and to read the mRNA three nucleotides at a time. The genetic code is highly similar among all organisms and can be expressed in a simple table with 64 entries.