Search results
Results From The WOW.Com Content Network
The Cretaceous–Paleogene (K–Pg) extinction event, [a] also known as the K–T extinction, [b] was the mass extinction of three-quarters of the plant and animal species on Earth [2] [3] approximately 66 million years ago. The event caused the extinction of all non-avian dinosaurs.
Summer: A poll of more than 600 paleontologists and other Earth scientists found 24% to support the impact hypothesis of the Cretaceous–Paleogene extinction event, 38% agreed that the impact occurred but was not the true cause of the mass extinction, 26% denied that any impact had occurred and 12% completely denied the occurrence of a mass ...
The End Cretaceous extinction, or the K–Pg extinction (formerly K–T extinction) occurred at the Cretaceous (Maastrichtian) – Paleogene transition. [19] The event was formerly called the Cretaceous-Tertiary or K–T extinction or K–T boundary; it is now officially named the Cretaceous–Paleogene (or K–Pg) extinction event.
Paleogene: Eocene–Oligocene extinction event: 33.9 Ma: Multiple causes including global cooling, polar glaciation, falling sea levels, and the Popigai impactor [12] Cretaceous: Cretaceous–Paleogene extinction event: 66 Ma Chicxulub impactor; the volcanism which resulted in the formation of the Deccan Traps may have contributed. [13]
The Cretaceous (along with the Mesozoic) ended with the Cretaceous–Paleogene extinction event, a large mass extinction in which many groups, including non-avian dinosaurs, pterosaurs, and large marine reptiles, died out, widely thought to have been caused by the impact of a large asteroid that formed the Chicxulub crater in the Gulf of Mexico.
The Cretaceous–Paleogene extinction event was a large-scale mass extinction of animal and plant species in a geologically short period of time, approximately (Ma). It is widely known as the K–T extinction event and is associated with a geological signature, usually a thin band dated to that time and found in various parts of the world ...
They suggested that this layer was evidence of an impact event that triggered worldwide climate disruption and caused the Cretaceous–Paleogene extinction event, a mass extinction in which 75% of plant and animal species on Earth suddenly became extinct, including all non-avian dinosaurs. [8]
It is marked by an iridium anomaly produced by an asteroid impact, and is associated with the Cretaceous–Paleogene extinction event. The boundary is defined as the rusty colored base of a 50 cm thick clay, which would have been deposited over only a few days. Similar layers are seen in marine and continental deposits worldwide.