When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. SOFAR channel - Wikipedia

    en.wikipedia.org/wiki/SOFAR_channel

    The SOFAR channel (short for sound fixing and ranging channel), or deep sound channel (DSC), [1] is a horizontal layer of water in the ocean at which depth the speed of sound is at its minimum. The SOFAR channel acts as a waveguide for sound, and low frequency sound waves within the channel may travel thousands of miles before dissipating.

  3. Underwater acoustics - Wikipedia

    en.wikipedia.org/wiki/Underwater_acoustics

    Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.

  4. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    Since temperature (and thus the speed of sound) decreases with increasing altitude up to 11 km, sound is refracted upward, away from listeners on the ground, creating an acoustic shadow at some distance from the source. [9] The decrease of the speed of sound with height is referred to as a negative sound speed gradient.

  5. Mesopelagic zone - Wikipedia

    en.wikipedia.org/wiki/Mesopelagic_zone

    The Sound Fixing and Ranging (SOFAR) channel, where sound travels the slowest due to salinity and temperature variations, is located at the base of the mesopelagic zone at about 600–1,200m. [6] It is a wave-guided zone where sound waves refract within the layer and propagate long distances. [ 5 ]

  6. Sonar - Wikipedia

    en.wikipedia.org/wiki/Sonar

    The study of underwater sound is known as underwater ... but at between 30 and 100 meters there is ... which causes the sound waves to refract away from the area ...

  7. Sound speed profile - Wikipedia

    en.wikipedia.org/wiki/Sound_speed_profile

    Figure 1. Table 1's data in graphical format. Although given as a function of depth [note 1], the speed of sound in the ocean does not depend solely on depth.Rather, for a given depth, the speed of sound depends on the temperature at that depth, the depth itself, and the salinity at that depth, in that order.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Sound velocity probe - Wikipedia

    en.wikipedia.org/wiki/Sound_Velocity_Probe

    If the distance from the transducer to the reflector is known, and the time taken from the transmit to the receive pulse is known, then the speed of sound in water can be calculated. Transducers used in sound velocity probes are typically of a high frequency (around 1 - 4 MHz) as the transmit and receive distances are close enough to mitigate ...