When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In more than three dimensions, polyhedra generalize to polytopes, with higher-dimensional convex regular polytopes being the equivalents of the three-dimensional Platonic solids. In the mid-19th century the Swiss mathematician Ludwig Schläfli discovered the four-dimensional analogues of the Platonic solids, called convex regular 4-polytopes.

  3. Regular 4-polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_4-polytope

    The regular convex 4-polytopes are the four-dimensional analogues of the Platonic solids in three dimensions and the convex regular polygons in two dimensions. Each convex regular 4-polytope is bounded by a set of 3-dimensional cells which are all Platonic solids of the same type and size.

  4. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The regular finite polygons in 3 dimensions are exactly the blends of the planar polygons (dimension 2) with the digon (dimension 1). They have vertices corresponding to a prism ({n/m}#{} where n is odd) or an antiprism ({n/m}#{} where n is even). All polygons in 3 space have an even number of vertices and edges.

  5. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    The convex regular 4-polytopes are the four-dimensional analogues of the Platonic solids. The most familiar 4-polytope is the tesseract or hypercube, the 4D analogue of the cube. The convex regular 4-polytopes can be ordered by size as a measure of 4-dimensional content (hypervolume) for the same radius.

  6. Regular polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_polytope

    In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry.In particular, all its elements or j-faces (for all 0 ≤ j ≤ n, where n is the dimension of the polytope) — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension j≤ n.

  7. Polytope - Wikipedia

    en.wikipedia.org/wiki/Polytope

    But in higher dimensions there are no other regular polytopes. [2] In three dimensions the convex Platonic solids include the fivefold-symmetric dodecahedron and icosahedron, and there are also four star Kepler-Poinsot polyhedra with fivefold symmetry, bringing the total to nine regular polyhedra.

  8. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    Nevertheless, there is general agreement that a polyhedron is a solid or surface that can be described by its vertices (corner points), edges (line segments connecting certain pairs of vertices), faces (two-dimensional polygons), and that it sometimes can be said to have a particular three-dimensional interior volume.

  9. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    The five Platonic solids have an Euler characteristic of 2. This simply reflects that the surface is a topological 2-sphere, and so is also true, for example, of any polyhedron which is star-shaped with respect to some interior point.