Search results
Results From The WOW.Com Content Network
Modulo operations might be implemented such that a division with a remainder is calculated each time. For special cases, on some hardware, faster alternatives exist. For example, the modulo of powers of 2 can alternatively be expressed as a bitwise AND operation (assuming x is a positive integer, or using a non-truncating definition):
Any set of m integers, no two of which are congruent modulo m, is called a complete residue system modulo m. The least residue system is a complete residue system, and a complete residue system is simply a set containing precisely one representative of each residue class modulo m. [4] For example, the least residue system modulo 4 is {0, 1, 2, 3}.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.
Hence another name is the group of primitive residue classes modulo n. In the theory of rings , a branch of abstract algebra , it is described as the group of units of the ring of integers modulo n .
For example, the cyclic group of addition modulo n can be obtained from the group of integers under addition by identifying elements that differ by a multiple of and defining a group structure that operates on each such class (known as a congruence class) as a single entity.
Implements the mathematical modulo operator. The returned result is always of the same sign as the modulus or nul, and its absolute value is lower than the absolute value of the modulus. However, this template returns 0 if the modulus is nul (this template should never return a division by zero error).
Every number in a reduced residue system modulo n is a generator for the additive group of integers modulo n. A reduced residue system modulo n is a group under multiplication modulo n . If { r 1 , r 2 , ... , r φ( n ) } is a reduced residue system modulo n with n > 2, then ∑ r i ≡ 0 mod n {\displaystyle \sum r_{i}\equiv 0\!\!\!\!\mod n} .