When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kummer's theorem - Wikipedia

    en.wikipedia.org/wiki/Kummer's_theorem

    In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper, (Kummer 1852).

  3. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    As one special case, it can be used to prove that if n is a positive integer then 4 divides () if and only if n is not a power of 2. It follows from Legendre's formula that the p -adic exponential function has radius of convergence p − 1 / ( p − 1 ) {\displaystyle p^{-1/(p-1)}} .

  4. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Let p and q be polynomials with coefficients in an integral domain F, typically a field or the integers. A greatest common divisor of p and q is a polynomial d that divides p and q, and such that every common divisor of p and q also divides d.

  5. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    By successively dividing out factors x − a, one sees that any polynomial with complex coefficients can be written as a constant (its leading coefficient) times a product of such polynomial factors of degree 1; as a consequence, the number of (complex) roots counted with their multiplicities is exactly equal to the degree of the polynomial.

  6. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    A polynomial P with coefficients in a UFD R is then said to be primitive if the only elements of R that divide all coefficients of P at once are the invertible elements of R; i.e., the gcd of the coefficients is one. Primitivity statement: If R is a UFD, then the set of primitive polynomials in R[X] is closed under multiplication.

  7. Polynomial ring - Wikipedia

    en.wikipedia.org/wiki/Polynomial_ring

    Formally, the polynomial ring in n noncommuting variables with coefficients in the ring R is the monoid ring R[N], where the monoid N is the free monoid on n letters, also known as the set of all strings over an alphabet of n symbols, with multiplication given by concatenation. Neither the coefficients nor the variables need commute amongst ...

  8. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...

  9. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    This pen-and-paper method uses the same algorithm as polynomial long division, but mental calculation is used to determine remainders. This requires less writing, and can therefore be a faster method once mastered. The division is at first written in a similar way as long multiplication with the dividend at the top, and the divisor below it.