Search results
Results From The WOW.Com Content Network
An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments. [ 1 ] : 204–206 For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} of the unit circle defines y as an implicit function ...
The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).
Second derivative; Implicit differentiation; ... then the derivative of the function can be taken ... For example, one can consider the kinematics problem where one ...
(These two functions also happen to meet (−1, 0) and (1, 0), but this is not guaranteed by the implicit function theorem.) The implicit function theorem is closely related to the inverse function theorem, which states when a function looks like graphs of invertible functions pasted together.
Explicit examples from the linear multistep family include the Adams–Bashforth methods, and any Runge–Kutta method with a lower diagonal Butcher tableau is explicit. A loose rule of thumb dictates that stiff differential equations require the use of implicit schemes, whereas non-stiff problems can be solved more efficiently with explicit ...
In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...
In general, implicit curves fail the vertical line test (meaning that some values of x are associated with more than one value of y) and so are not necessarily graphs of functions. However, the implicit function theorem gives conditions under which an implicit curve locally is given by the graph of a function (so in particular it has no self ...
Implicit differentiation can be used to compute the n th derivative of a quotient (partially in terms of its first n − 1 derivatives). For example, differentiating = twice (resulting in ″ = ″ + ′ ′ + ″) and then solving for ″ yields ″ = ″ = ″ ″ ′ ′.