When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quantile normalization - Wikipedia

    en.wikipedia.org/wiki/Quantile_normalization

    To quantile normalize two or more distributions to each other, without a reference distribution, sort as before, then set to the average (usually, arithmetic mean) of the distributions. So the highest value in all cases becomes the mean of the highest values, the second highest value becomes the mean of the second highest values, and so on.

  3. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series. Some ...

  4. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    Thus to compare residuals at different inputs, one needs to adjust the residuals by the expected variability of residuals, which is called studentizing. This is particularly important in the case of detecting outliers, where the case in question is somehow different from the others in a dataset. For example, a large residual may be expected in ...

  5. Non-linear least squares - Wikipedia

    en.wikipedia.org/wiki/Non-linear_least_squares

    Consider a set of data points, (,), (,), …, (,), and a curve (model function) ^ = (,), that in addition to the variable also depends on parameters, = (,, …,), with . It is desired to find the vector of parameters such that the curve fits best the given data in the least squares sense, that is, the sum of squares = = is minimized, where the residuals (in-sample prediction errors) r i are ...

  6. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.

  7. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    The method of iteratively reweighted least squares (IRLS) is used to solve certain optimization problems with objective functions of the form of a p-norm: ⁡ = | |, by an iterative method in which each step involves solving a weighted least squares problem of the form: [1]

  8. Studentized residual - Wikipedia

    en.wikipedia.org/wiki/Studentized_residual

    On the other hand, the internally studentized residuals are in the range , where ν = n − m is the number of residual degrees of freedom. If t i represents the internally studentized residual, and again assuming that the errors are independent identically distributed Gaussian variables, then: [2]

  9. Least absolute deviations - Wikipedia

    en.wikipedia.org/wiki/Least_absolute_deviations

    Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the sum of absolute deviations (also sum of absolute residuals or sum of absolute errors) or the L 1 norm of such values.