Search results
Results From The WOW.Com Content Network
Download as PDF; Printable version; ... A Turing machine is a mathematical model of computation describing an abstract machine [1] ... Toggle the table of contents.
Print/export Download as PDF; Printable version; In other projects ... of a Turing machine on input x, such that in this sequence of states, ...
In computer science, a universal Turing machine (UTM) is a Turing machine capable of computing any computable sequence, [1] as described by Alan Turing in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem". Common sense might say that a universal machine is impossible, but Turing proves that it is possible.
The specialized halting problem for an individual Turing machine T (i.e., the set of inputs for which T eventually halts) is many-one complete iff T is a universal Turing machine. Emil Post showed that there exist recursively enumerable sets that are neither decidable nor m-complete, and hence that there exist non universal Turing machines ...
Description numbers are numbers that arise in the theory of Turing machines. They are very similar to Gödel numbers, and are also occasionally called "Gödel numbers" in the literature. Given some universal Turing machine, every Turing machine can, given its encoding on that machine, be assigned a number. This is the machine's description number.
With regard to what actions the machine actually does, Turing (1936) [2] states the following: "This [example] table (and all succeeding tables of the same kind) is to be understood to mean that for a configuration described in the first two columns the operations in the third column are carried out successively, and the machine then goes over into the m-configuration in the final column."
A configuration, also called an instantaneous description (ID), is a finite representation of the machine at a given time. For example, for a finite automata and a given input, the configuration will be the current state and the number of read letters, for a Turing machine it will be the state, the content of the tape and the position of the head.
Turing's a-machine model. Turing's a-machine (as he called it) was left-ended, right-end-infinite. He provided symbols əə to mark the left end. A finite number of tape symbols were permitted. The instructions (if a universal machine), and the "input" and "out" were written only on "F-squares", and markers were to appear on "E-squares".