Search results
Results From The WOW.Com Content Network
The basic rule for divisibility by 4 is that if the number formed by the last two digits in a number is divisible by 4, the original number is divisible by 4; [2] [3] this is because 100 is divisible by 4 and so adding hundreds, thousands, etc. is simply adding another number that is divisible by 4. If any number ends in a two digit number that ...
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
Name First elements Short description OEIS Mersenne prime exponents : 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, ... Primes p such that 2 p − 1 is prime.: A000043 ...
Zelinsky proved that no three consecutive integers can all be refactorable. [1] Colton proved that no refactorable number is perfect . The equation gcd ( n , x ) = τ ( n ) {\displaystyle \gcd(n,x)=\tau (n)} has solutions only if n {\displaystyle n} is a refactorable number, where gcd {\displaystyle \gcd } is the greatest common divisor function.
Because matrix multiplication is not commutative, one can also define a left division or so-called backslash-division as A \ B = A −1 B. For this to be well defined, B −1 need not exist, however A −1 does need to exist. To avoid confusion, division as defined by A / B = AB −1 is sometimes called right division or slash-division in this ...
Informally, the probability that any number is divisible by a prime (or in fact any integer) p is ; for example, every 7th integer is divisible by 7. Hence the probability that two numbers are both divisible by p is 1 p 2 , {\displaystyle {\tfrac {1}{p^{2}}},} and the probability that at least one of them is not is 1 − 1 p ...
An integer is even if it is divisible by 2, and odd if it is not. [1] For example, −4, 0, and 82 are even numbers, while −3, 5, 7, and 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201.
The smallest abundant number not divisible by 2 or by 3 is 5391411025 whose distinct prime factors are 5, 7, 11, 13, 17, 19, 23, and 29 (sequence A047802 in the OEIS). An algorithm given by Iannucci in 2005 shows how to find the smallest abundant number not divisible by the first k primes. [1]