Search results
Results From The WOW.Com Content Network
The problems of finding a Hamiltonian path and a Hamiltonian cycle can be related as follows: In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be ...
A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. The computational problems of determining whether such paths and cycles exist in graphs are NP-complete; see Hamiltonian path problem for ...
Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms of the number of edges between parts. [3]: GT11, GT12, GT13, GT14, GT15, GT16, ND14 Grundy number of a directed graph. [3]: GT56 Hamiltonian completion [3]: GT34 Hamiltonian path problem ...
In graph theory, the Lovász conjecture (1969) is a classical problem on Hamiltonian paths in graphs. It says: Every finite connected vertex-transitive graph contains a Hamiltonian path. Originally László Lovász stated the problem in the opposite way, but this version became
Pages in category "Computational problems in graph theory" The following 75 pages are in this category, out of 75 total. ... Hamiltonian path; Hamiltonian cycle ...
The Hamiltonian completion problem is to find the minimal number of edges to add to a graph to make it Hamiltonian. The problem is clearly NP-hard in the general case (since its solution gives an answer to the NP-complete problem of determining whether a given graph has a Hamiltonian cycle). The associated decision problem of determining ...
Furthermore, the longest path problem is solvable in polynomial time on any class of graphs with bounded treewidth or bounded clique-width, such as the distance-hereditary graphs. Finally, it is clearly NP-hard on all graph classes on which the Hamiltonian path problem is NP-hard, such as on split graphs, circle graphs, and planar graphs.
A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).