Search results
Results From The WOW.Com Content Network
A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path.
The problems of finding a Hamiltonian path and a Hamiltonian cycle can be related as follows: In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be ...
Furthermore, the longest path problem is solvable in polynomial time on any class of graphs with bounded treewidth or bounded clique-width, such as the distance-hereditary graphs. Finally, it is clearly NP-hard on all graph classes on which the Hamiltonian path problem is NP-hard, such as on split graphs, circle graphs, and planar graphs.
A Hamiltonian cycle on a tesseract with vertices labelled with a 4-bit cyclic Gray code. Every hypercube Q n with n > 1 has a Hamiltonian cycle, a cycle that visits each vertex exactly once. Additionally, a Hamiltonian path exists between two vertices u and v if and only if they have different colors in a 2-coloring of the graph.
The Hamiltonian paths are in one-to-one correspondence with the minimal feedback arc sets of the tournament. [5] Rédei's theorem is the special case for complete graphs of the Gallai–Hasse–Roy–Vitaver theorem , relating the lengths of paths in orientations of graphs to the chromatic number of these graphs.
Illustration for the proof of Ore's theorem. In a graph with the Hamiltonian path v 1...v n but no Hamiltonian cycle, at most one of the two edges v 1 v i and v i − 1 v n (shown as blue dashed curves) can exist. For, if they both exist, then adding them to the path and removing the (red) edge v i − 1 v i would produce a Hamiltonian cycle.
Another version of Lovász conjecture states that . Every finite connected vertex-transitive graph contains a Hamiltonian cycle except the five known counterexamples.. There are 5 known examples of vertex-transitive graphs with no Hamiltonian cycles (but with Hamiltonian paths): the complete graph, the Petersen graph, the Coxeter graph and two graphs derived from the Petersen and Coxeter ...
Hamiltonian path – a path that visits each vertex exactly once. Route inspection problem, search for the shortest path that visits all edges, possibly repeating edges if an Eulerian path does not exist. Veblen's theorem, which states that graphs with even vertex degree can be partitioned into edge-disjoint cycles regardless of their connectivity