Ads
related to: x ray laser energy output chart for home
Search results
Results From The WOW.Com Content Network
As the common visible-light laser transitions between electronic or vibrational states correspond to energies up to only about 10 eV, different active media are needed for X-ray lasers. Between 1978 and 1988 in Project Excalibur the U.S. military attempted to develop a nuclear explosion-pumped X-ray laser for ballistic missile defense as part ...
Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The height of the lines and bars gives an indication of the maximal power/pulse energy commercially available, while the color codifies the type of laser material (see the figure description for details).
Sankey diagram of the laser energy to hohlraum x-ray to target capsule energy coupling efficiency. Note the "laser energy" is after conversion to UV, which loses about 50% of the original IR power. The conversion of x-ray heat to energy in the fuel loses another 90% – of the 1.9 MJ of laser light, only about 10 kJ ends up in the fuel itself.
As electron kinetic energy and undulator parameters can be adapted as desired, free-electron lasers are tunable and can be built for a wider frequency range than any other type of laser, [3] currently ranging in wavelength from microwaves, through terahertz radiation and infrared, to the visible spectrum, ultraviolet, and X-ray.
Comparing a ruby laser that operates at 694.3 nm to a hypothetical soft X-ray laser that might operate at 1 nm, this means the X-ray transition is 694 3, or a little over 334 million times less likely. To provide the same total output energy, one needs a similar increase in input energy.
By 1980 Livermore considered both nuclear bombs and nuclear reactors as viable energy sources for an x-ray laser. On November 14, 1980, the first successful test of the bomb-powered x-ray laser was conducted. The use of a bomb was initially supported over that of the reactor driven laser because it delivered a more intense beam.
A disk laser configuration presented in 1992 at the SPIE conference. [1] One type of solid-state laser designed for good power scaling is the disk laser (or "active mirror" [1]). Such lasers are believed to be scalable to a power of several kilowatts from a single active element in continuous-wave operation. [2]
A typical superficial X-ray energy might be 100 kVp per 3 mmAl – "100 kilovolts applied to the X-ray tube with a measured half-value layer of 3 millimeters of aluminum". The half-value layer for orthovoltage beams is more typically measured using copper; a typical orthovoltage energy is 250 kVp per 2 mmCu. [ 7 ]
Ad
related to: x ray laser energy output chart for home