Search results
Results From The WOW.Com Content Network
Now, if this motor is fed with current of 2 A and assuming that back-EMF is exactly 2 V, it is rotating at 7200 rpm and the mechanical power is 4 W, and the force on rotor is = N or 0.0053 N. The torque on shaft is 0.0053 N⋅m at 2 A because of the assumed radius of the rotor (exactly 1 m).
When an electric motor, AC or DC, is first energized, the rotor is not moving, and a current equivalent to the stalled current will flow, reducing as the motor picks up speed and develops a back EMF to oppose the supply. AC induction motors behave as transformers with a shorted secondary until the rotor begins to move, while brushed motors ...
The field produced by a single-phase winding can provide energy to a motor already rotating, but without auxiliary mechanisms the motor will not accelerate from a stop. A rotating magnetic field of steady amplitude requires that all three phase currents be equal in magnitude, and accurately displaced one-third of a cycle in phase.
A three-phase induction motor has a simple design, inherently high starting torque and high efficiency. Such motors are applied in industry for many applications. A three-phase motor is more compact and less costly than a single-phase motor of the same voltage class and rating, and single-phase AC motors above 10 hp (7.5 kW) are uncommon. Three ...
An industrial electric motor . An electric motor is a machine that converts electrical energy into mechanical energy.Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft.
Direct torque control (DTC) is one method used in variable-frequency drives to control the torque (and thus finally the speed) of three-phase AC electric motors.This involves calculating an estimate of the motor's magnetic flux and torque based on the measured voltage and current of the motor.
The induced current create a rotor flux with magnetic polarity opposite to the stator. In this way, the rotor is dragged along behind stator flux, with the currents in the rotor induced at the slip frequency. The motor runs at the speed where the induced rotor current gives rise to torque equal to the shaft load.
With a lower overall voltage across the motor's internal resistance as the motor turns faster, the current flowing into the motor decreases. [4] One practical application of this phenomenon is to indirectly measure motor speed and position, as the back-EMF is proportional to the rotational speed of the armature. [5]