Search results
Results From The WOW.Com Content Network
A particularly common α-substitution reaction in the laboratory is the halogenation of aldehydes and ketones at their α positions by reaction Cl 2, Br 2 or I 2 in acidic solution. Bromine in acetic acid solvent is often used.
The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. [1] It was first described by Eduard Buchner and Theodor Curtius in 1885 [2] and later by Fritz Schlotterbeck in 1907. [3]
Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group.
In monometallic complexes, aldehydes and ketones can bind to metals in either of two modes, η 1-O-bonded and η 2-C,O-bonded. These bonding modes are sometimes referred to sigma- and pi-bonded. These forms may sometimes interconvert. The sigma bonding mode is more common for higher valence, Lewis-acidic metal centers (e.g., Zn 2+). [1]
The aldol reaction (aldol addition) is a reaction in organic chemistry that combines two carbonyl compounds (e.g. aldehydes or ketones) to form a new β-hydroxy carbonyl compound. Its simplest form might involve the nucleophilic addition of an enolized ketone to another: Prototype aldol reaction
The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H 2 O 2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H 2 O 2 is reduced.
The Corey–Kim oxidation is an oxidation reaction used to synthesize aldehydes and ketones from primary and secondary alcohols. [1] [2] [3] [4] [5] It is named for ...
As a strategy for protecting aldehydes and ketones, dithiane formation is cumbersome because deprotection is inefficient. Typically ketones and aldehydes are protected as their dioxolanes instead of dithianes. The Corey–Seebach reaction is of interest as an acyl anion equivalent, allowing aldehydes to be converted to ketones.