Search results
Results From The WOW.Com Content Network
Astrocytes (green) in the context of neurons (red) in a mouse cortex cell culture 23-week-old fetal brain culture human astrocyte Astrocytes (red-yellow) among neurons (green) in the living cerebral cortex. Astrocytes are a sub-type of glial cells in the central nervous system. They are also known as astrocytic glial cells.
Interruptions of coronary circulation quickly cause heart attacks (myocardial infarctions), in which the heart muscle is damaged by oxygen starvation. Such interruptions are usually caused by coronary ischemia linked to coronary artery disease , and sometimes to embolism from other causes like obstruction in blood flow through vessels.
Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages
The action potential passes along the cell membrane causing the cell to contract, therefore the activity of the sinoatrial node results in a resting heart rate of roughly 60–100 beats per minute. All cardiac muscle cells are electrically linked to one another, by intercalated discs which allow the action potential to pass from one cell to the ...
The heart is a muscular organ situated in the mediastinum.It consists of four chambers, four valves, two main arteries (the coronary arteries), and the conduction system. The left and right sides of the heart have different functions: the right side receives de-oxygenated blood through the superior and inferior venae cavae and pumps blood to the lungs through the pulmonary artery, and the left ...
The heart is a muscular organ found in humans and other animals. This organ pumps blood through the blood vessels. [1] Heart and blood vessels together make the circulatory system. [2] The pumped blood carries oxygen and nutrients to the tissue, while carrying metabolic waste such as carbon dioxide to the lungs. [3]
Astrocytes An important feature of astrocytes is their high expression levels of the gap junction proteins connexin 30 (Cx30) and connexin 43 (Cx43). These proteins play crucial roles in regulating brain homeostasis through potassium buffering, intercellular communication, and nutrient transport.
Although all of these functions of the T-type voltage gated calcium channel are important, quite possibly the most important of its functions is its ability to generate potentials that allow for rhythmic bursts of action potentials in cardiac cells of the sinoatrial node of the heart and in the thalamus of the brain. [1]